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Abstract

Three-dimensional stress analysis in a unit-cell of a plain-woven composite was performed by using B-spline dis-
placement approximation. The spline approximation provides continuity of displacement and stress components within
each yarn and matrix subregion. Two types of unit-cell problems with and without inter-yarn delamination were
considered. A penalty function approach along with a contact surface characteristic function was used to obtain a full-
field numerical solution for the frictionless contact problem between delaminated yarn surfaces.

Yarn interfaces at yarn-crossover locations represent three-material wedge-type regions resulting in singular stress
behavior. In the case of unit-cells with perfect bonding between the yarn interfaces, the numerical values of the inter-
yarn normal stress did not exhibit trends typical for unbounded stress behavior, whereas the inter-yarn shear stress
components displayed discontinuous behavior typical for numerical results in the vicinity of the stress singularity. In the
presence of the delamination, both the inter-yarn normal and shear stress components exhibited unbounded behavior
near the singularity. Notably, the inter-yarn normal stress showed signs of singular behavior in both cases of open and
closed delaminations. Due to the stress singularity that exists at yarn-crossover locations containing three materials
(yarn—yarn-matrix) interface intersections, the full-field numerical solution, even with high-order approximation
functions, was not able to capture the directional nonuniqueness of the stress values in the vicinity of the singularity,
and therefore calls for incorporation of the asymptotic singular stress analysis, which will be given in a follow-on paper
[Sihn and Roy, International Journal of Solids and Structures (accepted for publication)].
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The innovative weaving and braiding process opens up new opportunities for manufacturing three-
dimensional (3-D) textile (preformed) composite structures with significantly increased damage resistance/
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tolerance and durability combined with design flexibility and near net-shape processing. The fiber tows
in the textile preform can be selectively placed and integrally woven in preferred directions (especially
in the thickness direction) to overcome the inherent weakness of low through-the-thickness damage
tolerance and strength of traditional laminated composites. The 3-D textile preform has been found to
significantly enhance the fatigue life of composite joints, due to its exceptional through-the-thickness
strength.

However, unlike processing traditional laminated composites, the relative spatial locking of the rein-
forcing tows (yarns) due to 3-D intertwining of the tows (yarns) prevents free chemical shrinkage of resin
during processing, and hence causes process-induced yarn interface and matrix cracks in polymer matrix
textile composites, as shown in Fig. 1. Although 3-D textile composites offer tremendous potential, unless
this cracking phenomenon of the 3-D textile composites is understood and the stability of these cracks
(damage tolerance) under load is quantified, the designers lack confidence in transitioning the 3-D textile
composites in real structures.

Furthermore, in situ experimental observation by Roy (1996) of damage initiation in two-dimensional
(2-D) textile composites reveals that the damage initiates in the form of interface cracks in the vicinity of
yarn crimping, which is strongly influenced by the inter-yarn stresses in the interface region. Therefore, in
order to understand and quantify the cracking mechanism, and to determine damage tolerance and energy
release rates, etc., one needs an accurate prediction of the stress field, especially the inter-yarn stresses, in
the interface region as well as near the crack tip in the woven or textile composites.

Numerous research work on modeling of the textile composites has been performed based on a repre-
sentative volume element or a representative unit-cell approach, and devoted to prediction of effective
properties. Tan et al. (1997) reviewed 115 articles on the prediction of effective mechanical properties of the
textile composites, and Bystrom et al. (2000) evaluated different model predictions and compared them with
experimental data. Yang et al. (1986) derived a fiber inclination model for the calculation of the effective in-
plane elastic properties. The model treated the unit-cell of the woven composites as an assemblage of
inclined unidirectional laminates, which were solved by the classical laminated plate theory. Naik and
Shembekar (1992), Shembekar and Naik (1992) and Naik and Ganesh (1992) developed 2-D models for the
elastic analysis of the plain-woven composites by taking into account the actual cross-section geometry, gap
between two adjacent yarns and undulation, and continuity of yarns along both the warp and fill directions.
Naik and Ganesh (1994, 1996) developed a 2-D model for prediction of in-plane failure strength under in-
plane shear and uniaxial tensile loadings, respectively.

Fig. 1. Process-induced microcracking in three-dimensional textile (preform) composite.
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Some analytical models oversimplify many architectural parameters in the woven composites, such as
yarn undulation or fiber continuity, under an assumption of uniform stress and strain components in the
crimp region. Because of the complex yarn architecture, numerical analyses, such as a finite element
analysis, were preferred in the textile composite modeling. Most of the numerical models considered the
yarns as separate homogeneous unidirectional materials with continuous yarn undulation. Whitcomb
(1991) performed detailed 3-D finite element analysis of plain-woven composites, and illustrated the effects
of tow waviness on composite moduli, Poisson’s ratios and internal strain distributions. Woo and
Whitcomb (1994, 1996) developed a practical computational procedure based on a global/local finite ele-
ment method for the 3-D stress analysis of plain-woven composites. Woo and Whitcomb (2000) used post-
processing with macroelements for calculating stresses of woven composites.

This level of analysis, which took into account the crimp and undulation of the yarns and their inter-
action with the matrix material, enabled researchers to perform failure analyses of the textile composites.
Naik et al. (2002) performed stress and failure analysis of 3-D angle interlock woven composites under
uniaxial static tensile and shear loadings. Drapier and Wisnom (1999) used the finite element method to
investigate interlaminar shear behavior of non-crimp-fabric-based composites. It was established that the
interlaminar shear behavior was controlled by the development of high shear-strain concentrations induced
by the combination of mechanical and mesoscopic geometrical characteristics, and these shear-strain
concentrations were more likely to lead to local damage.

However, to date, no special attention has been paid to the accuracy of the stress field predictions
near the inter-yarn interface regions. Sihn and Roy (2001) analyzed the 3-D stress field of a unit-cell of
a plain-woven composite by using a mixed finite element method. This work considered the fiber yarns
as homogeneous unidirectional materials with continuously varying orientation and performed detailed
stress analysis in the vicinity of the crimping regions. The result revealed a singular stress behavior in
the interface region of the three-material (yarn crossover and matrix) junction. This singular stress field
phenomenon at the junction of three-material discontinuity is similar to the singular stress field of
the free-edge stress field of laminated composites. The numerical finite element analysis of using polyno-
mial shape functions, as was used by Sihn and Roy (2001), even with higher order polynomials and
extremely refined mesh failed to satisfy the interface stress continuity at the interface of the three-mate-
rial junctions. Further, the mixed finite element formulation of Sihn and Roy (2001), due to a large
number of variables involved, did not provide suitable computational efficiency. Therefore, it is desir-
able to ensure the validity of the stress calculation, the interfacial normal and shear stress components
in particular, near the yarn-crossover location (three-material junction) with suitable computational effi-
ciency.

In view of obtaining the accurate singular stress field with desirable computational efficiency, the present
study is devoted to prediction of the singular stress fields in the inter-yarn interface regions by using a two-
step approach. First, a numerical method based on a B-spline displacement approximation (Iarve, 1996)
will be applied for 3-D stress analysis in the unit-cell of the plain-woven composites. Two configurations of
the unit-cell with and without inter-yarn delamination will be considered, focusing on the validity of the
interfacial stress components near the material junction. A contact algorithm was used to model the inter-
yarn delamination in order to avoid yarn interpenetration. A penalty function approach along with contact
surface characteristic functions was used to formulate the contact problem. The results of these analyses
will be reported in the present paper.

Then we will perform an asymptotic analysis on the triple material junction (yarn-crossover location)
and obtain powers of stress singularity for various yarn and matrix materials and crimp angles. The
coefficients of the asymptotic expansion will be obtained by comparing the asymptotic solution with the
full-field numerical solution in the vicinity of the material intersection region. This development will be
reported in part I, an adjoining paper (Sihn et al., accepted for publication).



1380 S. Sihn et al. | International Journal of Solids and Structures 41 (2004) 1377-1393

2. Problem statement

The unit-cell of the plain-woven composite was modeled by dividing it into several homogeneous sub-
regions; each subregion was occupied by a characteristic fabric yarn or matrix, as shown in Fig. 2. Warp
and fill yarns were defined as the yarns filled with fiber bundles aligned along the x- and y-directions,
respectively, in a global xyz-coordinate system, while the remaining space in the unit-cell was filled with
resin matrix material. Subregions 1 and 4 correspond to the warp yarns, subregions 2 and 3 to the fill yarns,
and subregions 5 and 6 to the matrix material. The unit-cell of the plain-woven composites has dimensions
of the lengths of warp and fill yarns, L, = Ly = 2.8575 mm, and the half thicknesses of the yarns,
ty = tr = 0.142875 mm, representing a typical plain-woven composite of 12K (12,000 carbon fibers in a
tow) tows with tow spacing of 0.59 tows per mm (15 tows per inch).

Yarn waviness was assumed to be sinusoidal, and the functional forms of the lower and upper surfaces of
subregions 1-6 in Fig. 2 can be written as follows:

zﬁl) = tf(l —cos?) + ty (1 —Cosz—}:) 28) = tf<1 - COS?) +tw<1 +COS7£_):>7
x X

zf) = tf(l +cos—) + ty (1 cos%), z(l?) = tf<1 —cos—> +tw<l —cosZ—f),
zf) = tf(l —cosﬂ) + ty (1 +cos?>7 z(g) = tf<1 +cosE> +tw<1 +cos%>,
W f W f
z(L4) = tf(l +cosﬁ> + ty (1 —i—cos%)7 zﬁj” = tf<1 +COSE> —I—tw<1 - cos%),
W f W f
ZES) =0
and
q(l—cosﬁ)—i—tw(l—cos”—f) for 0<x<Ly/2, 0<y<Li/2,
) tf<l+cosLﬂw> +tw(1—cos"—f> for L,/2<x< Ly, 0<y<L/2, 2
zy =
tf(l —cosLﬂw) + tw(l +cos”—f) for 0<x<Ly/2, L,/2<y< Ly,
tf<1 +COS%) + tw(l +cos“—f) for Ly/2<x<Ly, L,/2<y<Ly,

Fig. 2. A representative unit-cell of plain-woven composites, and geometric parameters describing the unit-cell. Numbers in boxes are
subregion numbers, and numbers in circles are interface-line numbers. Interface line 1 is within 0 <x < L,,/2 and interface lines 2 and 3
are within Ly /2 <x < Ly.
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tf(1+cos’”) (l—l—cosﬂ) for 0 <x< Ly/2, 0<y<Li/2,
© tf(l—cos ) ( +cos"y) for L,/2<x< Ly, 0<y<L/2,
ZL =
(14 cos )+ 1 (1-cos ) for 0<x<Lu/2, L/2<y <L,
tf<1 %) tw(l cos™® ) for Ly/2<x<Ly, L,/2<y<Ly,
and
() _
zy =2t + t), (3)

where superscripts with parentheses indicate the subregion numbers, and subscripts L and U indicate the
lower and upper surfaces, respectively.

The warp and fill yarns were modeled as transversely isotropic materials with its material symmetry axis
aligned along the trajectory of the yarns. The transversely isotropic material properties of the yarns used in
this study were as follows: longitudinal Young’s modulus (£, = 138 GPa), transverse Young’s modulus
(E; = E5 = 10 GPa), in-plane Poisson’s ratio (vi; = v;3 = 0.3), out-of-plane Poisson’s ratio (v,3 = 0.5), in-
plane shear modulus (Gj» = G3 = 5.5 GPa) and out-of-plane shear modulus (Gy; = 2.9 GPa), representing
the material properties of a unidirectional carbon fiber reinforced composite. The matrix was modeled as an
isotropic material with E,, = 3.75 GPa and v,, = 0.34.

Two angles, yarn orientation angle 0, and crimp angle 0,, were used to describe the yarn orientation with
respect to global coordinates (x)z). The yarn orientation angle defined the projection of the fiber orientation
in the yarn on the xy-plane with respect to the global x-axis. This angle is constant in each yarn and equal to
0° for the warp yarns and 90° for the fill yarns. The crimp angle was introduced for the local fiber-
undulation directions in the xz-plane with respect to the x-axis for the warp yarns, and in the yz-plane with
respect to the y-axis for the fill yarns. From Eq. (1), the crimp angle for the warp yarns (subregions 1 and 4)
can be written as

o ((Ozu(x,p) o ((Ozlx,p)
—_ 1 v ) = — 1 - 7
02(x,y) = —tan ( o ) = —tan ( o , 4)
and for the fill yarns (subregions 2 and 3) as
1 [ Ozy(x,y) 1 [ Ozr(x,y)
_ 1 U\Ay — 1 )
0,(x,y) = tan <7ay ) = tan <7ay . (5)

In all cases, since the tows are reinforced with unidirectional fibers, the crimp angle is a function of x and y
only, so that it is considered as constant along the z-direction in each yarn, independent of z-direction
within a tow (yarn).

Let an on-axis coordinate system represent directions of principal material axes in the yarns. In this
coordinate system, the yarn stiffness matrix, [C] ., is constant and corresponds to transversely isotropic
material (Tsai, 1992). Let us denote the displacement, stress and strain components in the on-axis co-
ordinates as {u},, {0},, and {¢},,, respectively. One can then express the displacement, stress and strain
components in global xyz-coordinates ({#}gopa> {7} gtopar a0 {€} giopar) a5

{1} gobar = [L2(02)][L1(01) {u}op, (6)
{0} gobar = [L2(O)[T1(01) {0}, ()

{&} giobar = [T2(02)] T [T1(01)] " {&} o (8)
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and the stiffness properties of the yarn in the global coordinate system ([C]global) as

[Claopa = {T (O[T (0)]}Cl o {[T2(02)][T1(01)]}, )
where
mp —ny 0
[L] (01)] = ni ny 0 s (10)
0 0 1
my 0 ny
Ly(0)]"™ =10 1 0 for the warp yarns, (11)
—ny 0 nmy
1 0 0
[L(0)]™ =10 my —ny| for the fill yarns, (12)
0 ny my
m? n 0 0 0 =2mmn
n% m% 0 O 0 2myn
0 0 1 0 0 0
= | 0 0 m m 0o | (13)
0 0 0 —ny mp 0
mn, —mm; 0 0 0 mf - nf
m% 0 n% 0 2mon, 0
0 1 0 0 0 0
2 2
warp __ ny 0 my 0 —2”)12}’!2 0
[T2(0:)]F = 0 0 0 m 0 s for the warp yarns, (14)
—myny 0 mpmy, 0 my — n% 0
0 0 0 = 0 my
1 0 0 0 0 0
0 m n —2mny, 0 0
m_ |0 n m; 2myny 0 0
[(6)]" = 0 mom —moms mi—nl 0 0 for the fill yarns, (15)
0 0 0 0 my N
0 0 0 0 —ny my

and m; = cos(6,), n; = sin(0;), my = cos(6,) and n, = sin(6,).
The unit-cell was loaded with a constant displacement (u,) in the x-direction under the following

boundary conditions:

u:(0,y,z) =0, u(Ly,y,2) = o,
uy(x,0,2) = uy(x,Lr,z) = u.(x,»,0) = 0.

(16)

The numbers of subdivision intervals in each subvolume in the x- and y-directions were denoted as n, and
ny, respectively, whereas those in the z-direction as n.. Note that the length in the x-, y- and z-directions were
L,/2, L¢/2 and 2t,, and 2¢, respectively. Three different mesh schemes were used for the convergence study

as follows:
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1. Mesh #1: Uniform mesh with n, =n, =5, n. = 2.
2. Mesh #2: Uniform mesh with n, = n, = 10, n. = 4.
3. Mesh #3: Nonuniform mesh with n, = n, =10, n, =4, g = 2.

Nonuniform mesh was used to concentrate the subdivisions to particular points, especially at the yarn
intersections. For example, ¢ = 2 in the z-direction means that the size of the mesh at the interfacial surface
of the yarns was two times smaller than that in the middle of the yarns. The stress results were normalized
by an arbitrarily chosen factor of g, = 0.01 GPa.

3. Full-field numerical calculation

The full-field 3-D solution for the woven fabric composites is obtained based on the B-spline dis-
placement approximation method implemented into a computer software, BSAM (2003).

3.1. B-spline approximation in a unit volume

Consider an elementary volume [0, 1]’ and a set of piecewise polynomial 3-D functions, X;(x), which
provide a partition of unity-type basis functions for displacement approximation, so that

u(x) = Z)(,-(X)U,-, (17)

where U; are displacement approximation coefficients, not necessarily associated with nodal displacements.
The index, i, in Eq. (17) varies from 1 to the total number of approximation functions, which we will denote
as a set Q. 3-D shape functions X;(x) are constructed from one-dimensional sets of B-spline basis functions
of order n and defect k as standard tensor products (Iarve, 1996, 1997).

Practical usefulness of the spline approximation for solution of boundary value problems is determined
by the properties of the set of basis functions used in the analysis. The B-spline basis functions, possessing
the shortest possible support for a given power n and defect &, represent an attractive computational
efficiency (Iarve, 1996). The minimum support length property provides maximum sparsity of the resulting
system of equations. Another significant advantage of the B-spline basis is the ability to change the defect of
the spline at the end nodes. This allows one to build a system of basis functions such that the displacements
at the end nodes are the actual coefficients of the spline functions. It provides a convenient way of imposing
boundary conditions by simply assigning spline function coefficients analogous to the traditional finite
element approximation. It should be noted that the displacements in the internal nodes are not explicitly
equal to the coefficients of the B-spline functions.

A recurrent procedure based on polynomial representation (Iarve, 1996) is used to build the set of B-
spline basis functions of arbitrary order and defect. Each one-dimensional basis spline function is non-
negative and possesses a local support of no more than n — k£ + 2 nodal intervals. These one-dimensional
basis functions, as well as multidimensional ones obtained as a tensor product of the one-dimensional
splines, represent a partition of unity with unit coefficients:

Y x(x) =1, xelo,1. (18)

i€Q

Fig. 3 shows an example of one-dimensional cubic splines with defect one built over an interval [0, 1] with
seven uniform subdivisions.
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Fig. 3. Overlapping cubic B-spline functions with seven subdivisions.

3.2. B-spline approximation in arbitrary volumes

The approximation in Eq. (17) was applied piecewise to volume partitions of the structure of interest, so
that each of the partitions can be conformably mapped onto the unit volume [0, 1]3. In the case of B-spline
approximation, the boundaries between these regions are the only surfaces of C° displacement continuity.
Inside these volumes, the displacement approximation smoothness is defined by the defect of the spline
approximation. It is therefore desired to have large and few partitions with the B-spline approximation,
while, in the case of the p-type approximation, a given accuracy can be achieved only by increasing the
power of approximation after the elements are defined.

In the present case, a natural subdivision for the unit-cell of the woven composite would be the volumes
occupied by yarns and the matrix. Thus the displacement and stress continuity within each yarn and matrix
volume is assured by using low defect spline approximation, while the C° continuity between them reflects
that occurring on the material interface. The 3-D displacement approximation is written as

u(x) =Y XU, x=n(s), j=1,...,6, (19)

i€Q;

where the entire volume of the unit-cell is divided into six subvolumes, as shown in Fig. 2. The sets of
indexes ;, j=1,...,6 in each subvolume depend upon the type of spline subdivision density utilized.
Curvilinear transformations x = n,(g) were defined in each subvolume to map their physical volume into
the unit volume. Here and below we shall use the variable, ¢, ¢ € [0, 1]3 to designate the local coordinates of
a point in each subvolume and x to designate its global xyz-coordinates. The approximation in Eq. (19)
satisfies the partition of unity feature since it is granted on each subvolume by Eq. (18).

Consider a delamination between yarns (subvolumes) 1 and 2 along the boundary 3, as shown in Fig. 2.
The curvilinear geometry of the unit-cell requires an application of the contact algorithm in order to model
the yarn delamination damage mode and prevent interpenetration, which may occur between the delam-
ination surfaces under specified loading conditions. A penalty function approach along with contact surface
characteristic functions was used to formulate the contact problem.

We shall designate the surface of the delamination as I'. at which either full or partial separation of the
yarns takes place. We choose yarn 1 as a controlling one in the contact formulation and all geometric
parameters are expressed in its coordinates. A non-penetration condition is expressed with unit vectors that
are normal, n(x), and tangential, t;(x) and t;(x), to the contact surface, I'., where x = #,(g) are the global
coordinates of the points on the contact surface of yarn 1 before deformation. The following conditions will
assure the non-penetration:
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[ (x) — u® (x)In(x) <0, (20)

where ul") and u® are displacement vectors of yarns 1 and 2, respectively. The tangential alignment con-
ditions are a priori satisfied in the infinitesimal limit, since the displacement jump on the surface of
delamination under zero loading is assumed not to exist. This simplification allows straightforward vari-
ational formulation of the contact problem, which is based on minimization of the following functional
constructed by using penalty function formulation and contact surface characteristic function H(x):

L=W()— //Sl Tuds + oc//rcH(x){[u(”(x) — u(z)(x)}n(x)}zds7 (21)

where W (u) is the total strain energy density function for the entire unit-cell, calculated by excluding the
delamination surface, « is the penalty parameter and S; is the traction-loaded portion of the outer boundary
of the unit-cell, not containing the contact surface.

The characteristic function H, which is unity in the contact surface and zero elsewhere, can also be
approximated by using the spline functions. A subset @, € Q| of the displacement approximation functions
of yarn 1 is defined by selecting the functions that are nonzeros anywhere on the surface I'.. This subset also
forms a partition of unity approximation, but only at the contact surface. Consider a set of binary coef-
ficients #4;, i € w., which can only be equal to 1 or 0. The following approximation for the characteristic
function on the surface I', is defined as

H(x) =) hXi(s), x=m(9). (22)

i€we

The contact surface characteristic function H is found iteratively by increasing the contact zone by setting
// [ (x) —u?(x)]n(x)X;ds > 0, (23)
I'c
which indicates penetration, and reducing the contact zone by setting 4; = 0 if

/ H(x)[uV (x) — u®(x)]n(x)X;ds < 0, (24)

which indicates the presence of separation in the region of nonzero contact tractions.

4. Numerical results

The displacement and stress fields in the yarn and matrix must satisfy interfacial continuity conditions.
The continuity of the displacements is assured due to the nature of the approximation method, while the
inter-yarn traction continuity conditions can only be satisfied in the limit of mesh refinement. We shall
examine these continuity conditions on the yarn—-yarn and yarn-matrix interfaces along lines 1, 2 and 3,
which are drawn with double lines in Fig. 2. The stresses will be shown in the local xX,x3 coordinate
systems such that the x3-axis is normal to the undulated surface under consideration. The displacement and
stress fields in these coordinates are denoted as u and &, and are obtained from those in the global xyz-
coordinates by using the following transformations:

{1} = [La(02)] {1} yovar (25)

{3} = [1(02)) {0} gopan: (26)
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Fig. 4. Displacement and traction continuity conditions at the interface between subregions (k) and (/).

where [L,(0,)] " = [L2(—6,)] and [T3(6,)] " = [T2(—0,)]. As Fig. 4 shows, the interface continuity conditions
are satisfied if

- "
iy =ay, (27)

v, (28)

where contracted notations are used for the stress components so that 6, 65, 63, 04, 65, 0 correspond to
011, 0, 033, 023, 013, 012, Fespectively. Note that o3 is the interfacial normal stress, and 64 and o5 are the
interfacial shear stress components. The subscripts (k) and (/) denote the subregion numbers.

The interfacial normal and shear stress fields were calculated along three inter-yarn boundaries taken at
the y = 0 face of the unit-cell. These three inter-yarn boundaries between (1) bottom matrix and warp yarn
(subregions 5 and 1), (2) bottom matrix and fill yarn (subregions 5 and 2) and (3) fill and warp yarns
(subregions 2 and 1) are shown in Fig. 2 by double lines. The results for 5, are not shown here since they are
negligible under the applied loading condition.

By using Eq. (4), the crimp angles (0,) along the inter-yarn boundaries were calculated from the
derivatives of the lower or upper surface functions in Egs. (1), so that the crimp angles along interface lines
1 and 3 were calculated with zil) of the subregion 1, and along interface line 2 with 222) of the subregion 2.
For example, the crimp angle along interface line 3 can be obtained as

ozt Tt X
—0) = — tan—! L = —tan ' [ 2 gin [ 22
0,(x,y =0) = —tan ( o ) ‘ 0 tan (Lw sin (Lw>>, (29)
e

and is plotted in Fig. 5. Note that 0,(x = L,/2,y = 0) = —tan"!(nt;/Ly) = —8.927°.

Figs. 6-11 show the interfacial normal (¢3) and shear stress (Gs) distributions calculated with three
different mesh schemes along the inter-yarn boundaries. Numbers in circles are the interface numbers.
Triangular and circular markers indicate the stress fields in upper (z*) and lower (z~) subregions, respec-
tively. The interfacial stress continuity conditions are satisfied when two lines with triangular and circular
markers coincide with each other. Quadratic spline functions were used for the displacement approximation
in all directions.
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Fig. 5. A distribution of yarn crimp angles along interface line 3 in Fig. 2.
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Fig. 6. Interfacial shear stress (gs) distributions on a unit-cell of undamaged woven composites along three inter-yarn boundaries

calculated with three different mesh schemes. Numbers in circles are interface line numbers: (a) o5 with mesh #1, (b) o5 with mesh #2,
(c) o5 with mesh #3, (d) interface lines in a unit-cell.

Fig. 6 shows the interfacial shear stress (G'5) distributions along the three inter-yarn boundaries on lines
1, 2 and 3. The inter-yarn shear stress distributions exhibit visible discontinuity between the upper and
lower surfaces on interfaces 1, 2 and 3 with the considered mesh refinements. With the coarsest mesh #1, the
stress continuity condition is not satisfied within approximately 0.3 < x/L,, < 0.65. Note that the thickness
of the fill yarn (subregion 2) is zero at x = L, /2. The upper-surface stress components on interfaces 1 and 3
form a continuous curve, since the upper surfaces of interfaces 1 and 3 form continuous lower surfaces of
the warp yarn (subregion 1). However, unlike the upper-surface components on interfaces 1 and 3, the
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Fig. 7. Interfacial normal stress (a3) distributions on a unit-cell of undamaged woven composites along three inter-yarn boundaries
calculated with three different mesh schemes. Numbers in circles are interface line numbers: (a)-(c) for 0 < x/L,, < 1 and (d)—(f) for
0.45 < x/L,, < 0.55. (a) o5 with mesh #1 (0 < x/L, < 1), (b) 753 with mesh #2 (0 < x/L,, < 1), (¢) o5 with mesh #3 (0 <x/L, < 1),
(d) o5 with mesh #1 (0.45 < x/L,, < 0.55), (e) o3 with mesh #2 (0.45 < x/L,, < 0.55), (f) 75 with mesh #3 (0.45 < x/L,, < 0.55).

lower-surface shear stresses on these interfaces yielded a significant stress jump at x = L,,/2. Because of the
presence of interface 2, the lower-surface components on interfaces 1 and 3 became significantly influenced
by the stress components on interface 2 at the point x = L,,/2, and thus yielded a directionally nonunique
stress field, causing the stress singularity (Iarve and Pagano, 2001). Since the continuity conditions were not
satisfied, the accuracy of the stress solution became questionable. With the mesh refinement, the region of
the inter-yarn shear stress discontinuity is reduced to approximately 0.4 < x/L,, < 0.6 with mesh #2 and
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Fig. 8. Interfacial normal stress (o3) distributions on a unit-cell of damaged woven composites in a crack-opening mode under a
compressive loading along two inter-yarn boundaries calculated with two different mesh schemes. Numbers in circles are interface line
numbers. (a) and (b) for 0 < x/L,, < 1 and (c) and (d) for 0.4 < x/L,, < 0.5. (a) 33 with mesh #2 (0 < x/L,, < 1), (b) o5 with mesh #3
(0 < x/Ly, < 1), (¢) &; with mesh #2 (0.4 < x/Ly < 0.5), (d) G5 with mesh #3 (0.4 < x/L,, < 0.5).

0.45 < x/Ly < 0.55 with mesh #3, as shown in Figs. 6(b) and (c), respectively. However, the accuracy of the
stress prediction in the vicinity of the stress singularity is a well-known shortcoming of polynomial
approximation based methods (Iarve and Pagano, 2001), and needs to be addressed by using a local
asymptotic solution.

Fig. 7 shows the interfacial shear stress (¢5) distributions along the three inter-yarn boundaries on lines
1, 2 and 3. Figs. 7(a)—(c), which are plotted for 0 < x/L,, < 1, were zoomed in toward the singular point and
plotted for 0.45 < x/L,, < 0.55 in Figs. 7(d)—(f). The results shown in Figs. 7(a)-(c) indicate that the
numerical values of the inter-yarn normal stress did not exhibit trends typical for unbounded stress
behavior, and this stress component appeared to satisfy the traction continuity conditions at the yarn—yarn
and the yarn—-matrix interfaces and pass continuously through the singular point. However, the zoomed
figures in Figs. 7(d)—(f) within 0.45 < x/L,, < 0.55 clearly shows the inter-yarn normal stress distributions
exhibit visible discontinuity between the upper and lower surfaces on interfaces 1, 2 and 3 in the vicinity of
the singular point. Note that the discontinuity also appeared near x = 0 and x = L,,, where the matrix
subregion has zero thickness. The singularity is due to the artificial zero thickness matrix subregion and can
be eliminated by incorporating more realistic geometry in the unit-cell. Therefore, this problem will not be
treated in this study.

Consider delamination between the warp yarn (subregion 1) and the fill yarn (subregion 2) along
interface line 3. The continuity boundary conditions of displacement and stress components in Egs. (27)
and (28) are no longer valid on this delaminated surface. The boundary conditions with the damaged
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Fig. 9. Interfacial shear stress (¢s) distributions on a unit-cell of damaged woven composites in a crack-opening mode under a
compressive loading along two inter-yarn boundaries calculated with two different mesh schemes. Numbers in circles are interface line
numbers. (a) and (b) for 0 < x/L,, < 1 and (c) and (d) for 0.4 < x/L,, < 0.5. (a) o5 with mesh #2 (0 < x/L,, < 1), (b) o5 with mesh #3
(0 < x/Ly < 1), (c) 5 with mesh #2 (0.4 < x/Ly, < 0.5), (d) G5 with mesh #3 (0.4 < x/L,, <0.5).

unit-cell are dependent on the applied loading conditions. For example, if a compressive load is applied
with u, < 0 in Eq. (16), the damaged surfaces are in an opening crack mode, and the corresponding inter-
yarn boundary conditions on the crack surfaces are written as

agk> — agl) =0,
/O_\ik) _ 3‘(‘1) 0, (30)
e =5 =0.

Meanwhile, if the tensile load is applied with u, > 0, the damaged surfaces are in a closing crack mode so
that they are in contact with each other, and the corresponding inter-yarn boundary conditions on the
contacted surfaces with a frictionless assumption are written as

)

a) =al,

~(k ~(!

7 = (31)
sW 50 _¢

4 — 04 =Y

7 =35 =0.

The interfacial normal (@3) and shear stress (o's) distributions along interface lines 1 and 3 in the presence
of the delamination on line 3 are shown in Figs. 8 and 9 for the crack opening case and Figs. 10 and 11 for
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Fig. 10. Interfacial normal stress (73) distributions on a unit-cell of damaged woven composites in a crack-closing mode under a tensile
loading along two inter-yarn boundaries calculated with two different mesh schemes. Numbers in circles are interface line numbers.
(a) and (b) for 0 <x/L, <1 and (c) and (d) for 0.4 <x/L, <0.5. (a) g3 with mesh #2 (0 <x/L, < 1), (b) o3 with mesh #3
(0 < x/Ly < 1), (c) 75 with mesh #2 (0.4 < x/Ly < 0.5), (d) 3 with mesh #3 (0.4 < x/L,, < 0.5).

the crack closing (contact) modes. Calculations with the refined meshes #2 and #3 only were shown here,
and those with the coarse mesh #1 were omitted. The result on interface line 2 is also omitted. Figs. 8-
11(a)—(b), which are plotted for 0 < x/L,, < 1, were zoomed in toward the singular point and plotted for
0.4 <x/Ly < 0.5 in Figs. 8-11(c)—(d). The interfacial stress continuity conditions in Eq. (28) must still be
satisfied on interface line 1, while the crack-opening or the contact boundary conditions in Egs. (30) and
(31) must be satisfied on interface line 3. Mesh refinement has reduced the inter-yarn stress discontinuity
region for both crack configurations.

As Figs. 8-11 show, the normal and shear stress components on interface 3 exhibit singular behavior
near the singular point x = L,/2. While the crack surfaces enforce the stress-free boundary conditions on
the upper side of interface 3, the continuity boundary conditions require smooth transition of the upper-
side stress components between interfaces 1 and 3. Therefore, unless the stress on the upper-side of interface
1 is zero, the stress-free and continuity boundary conditions are contradictory to each other. The non-
uniqueness of the stress values in the vicinity of the singular point cannot be captured by using the poly-
nomial displacement approximation functions. Because of the high stress concentration, the inter-yarn
stress discontinuity between the upper- and lower-surfaces is more significant than that in the undamaged
case in Figs. 6 and 7. In the presence of delamination, even the inter-yarn normal stress exhibits the visible
unbounded stress behavior and is discontinuous across the inter-yarn boundaries in the vicinity of x = L, /2
in both open- and the closed-crack cases.
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Fig. 11. Interfacial shear stress () distributions on a unit-cell of damaged woven composites in a crack-closing mode under a tensile
loading along two inter-yarn boundaries calculated with two different mesh schemes. Numbers in circles are interface line numbers.
(a) and (b) for 0 <x/Ly <1 and (c) and (d) for 0.4 <x/L, <0.5. (a) &5 with mesh #2 (0 <x/Ly, < 1), (b) o5 with mesh #3
(0 < x/Ly < 1), (c) 5 with mesh #2 (0.4 < x/L,, < 0.5), (d) G5 with mesh #3 (0.4 < x/L,, <0.5).

5. Summary and conclusions

The unit-cell of the plain-woven composite was modeled and analyzed with the 3-D numerical analysis
based on B-spline displacement approximation functions. The model calculated the 3-D stress field in the
woven composites with and without delamination damage at the yarn interface. The unit-cell model was
divided into several homogeneous subregions; each subregion was occupied by a characteristic fabric yarn
or matrix. The spline approximation provides continuity of displacement and stress components within
each yarn and matrix subregion. The penalty function method along with the contact surface characteristic
function was used to obtain the full-field numerical solution for the frictionless contact problem between
delaminated yarn surfaces.

Stress distributions in the unit-cells with perfect bonding between the yarn interfaces were obtained with
various mesh densities. The numerical values of the inter-yarn normal stress did not exhibit trends typical
for unbounded stress behavior. This stress component appeared to satisfy the traction continuity conditions
at the yarn—yarn and the yarn-matrix interfaces and pass continuously through the singular point. The
inter-yarn shear stress components, on the other hand, displayed discontinuous behavior typical for
numerical results in the vicinity of the stress singularity. In the presence of delamination, both the inter-
yarn normal and shear stress components exhibited unbounded behavior near the singularity. Notably, the
inter-yarn normal stress shows signs of singular behavior in both cases of open- and closed-delaminations.

Due to the stress singularity that exists at yarn-crossover locations containing three materials (yarn—
yarn—matrix) interface intersections, the full-field numerical solution, even with high-order approximation
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functions, found to be unable to capture the directional nonuniqueness of the stress values in the vicinity of
the singularity, and thus did not provide accurate prediction of the stress components. Therefore, it is
essential to incorporate analysis methods to capture the singular behavior at the singular points, such as an
asymptotic singular stress analysis, which will be given in a follow-on paper (Sihn et al., accepted for
publication).
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